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Choice of Variables and Preconditioning for Time Dependent problems

Eli Turkel
Tel-Aviv University, Israel and National Institute of Aerospace, Hampton, VA

Veer N. Vatsa
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We consider the use of low speed preconditioning fotto the preconditioning matrix. In the next section we
time dependent problems. These are solved using a dualill discuss in more details the options for choosing
time step approach. We consider the effect of this duaEquation (1) is advanced in artificial time by a Runge-
time step on the parameter of the low speed precondiKutta (RK) method until a steady state inis reached.
tioning. In addition, we compare the use of two sets ofWe replace the physical time derivative by a backward
variables, conservation and primitive variables, to solvedifference formula (BDF). The general formula for BDF
the system. We show the effect of these choices on batchemes can be presented as
the convergence to a steady state and the accuracy of the
numerical solutions for low Mach number steady state ow "t — F(w", w1, ..)
and time dependent flows. ot At

Introducti wherec; is constant which depends on the choice of BDF
w scheme. Let superscriptdenote the last artificial time
Methods for preconditioning the low speed Euler andstep, i the most recent stage of RK, the last physical

Navier-Stokes equations have been available for aboutme step and: + 1 the next physical time step. A typical
twenty years. In spite of these years of development andtage of the RK is

analysis there still exists difficulties with the robustness
of these techniques. This manifests itself in that some of , .,
the parameters of the preconditioning matrix are problem"’
dependent. Because of the stagnation points it is heces-
sary to prevent the parameters from becoming too smalivhereay, are the stage coefficients of the RK scheme.
Unfortunately, the cutoff is frequently large and problem In practice, only the inviscid portion d&* is updated at
dependent. In addition the theory of preconditioning is€ach stage. The viscous portion is updated, for a 5 stage
mainly based on properties of the inviscid Euler equa-Scheme, only on the odd stages. Becauw$g' is not
tions with artificial viscosity even though most of the known, we replace it by, i.e. current stage of RK.
applications are for viscous flows. We reformulate this as
The preconditioning changes the time dependent be- k_ p(h
havior of the system and so is only directly useful for w**! = w® — a, ATP {R’“ + 22 (w ’"')}
steady state calculations. To overcome this difficulty a
dual time step method has been used by many inves-
tigators3—%20 In this approach the solution at the next
physical time step is determined as a steady state pro
lem to which preconditioning is applicable. We shall
analyze time dependent effects on the preconditionin
parameters. We consider

n+1 _ F n
=w’ — a, ATP {Rk—I— e (w ’)}

At

k1 _ ok

— e ATP ()

l?l'\/e apply residual smoothing to the term inside the curly
brackets. This is done so that the residual smoothing op-
Lrates on a difference that vanishes in the steady state.
Collecting terms we have

ow Ow

—1
P EJrngRfo 1) (I+ak,Ct%’;P)wk+1:w0
wheret is the physical timeys is an artificial time, R p o cqwt —F(w",...)
denotes the residual for the steady Navier-Stokes equa- — oxATP {R + At } @
tions,w refers to a general set of unknowns dPdefers Ar
+ akct—Pwk
*Professor, Department of Mathematics, Associate Fellow At

TSenior Member . L . .
This material is declared a work of the U.S. Government and is not The space discretization consists of a central differ-

subject to copyright protection in the United States. ence formula plus a matrix valued artificial dissipation
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using second and fourth differences. We now describ(%%AQ, we get
the artificial viscosity due to the second order differenc-

ing. We express the dissipation in terms of derivatives (I + apey
rather than differences for presentation only. We con- At

AT

Po)Q+t = Q°

. . k _ n

sider the equation AT {ng\? L Cewe iﬂt(wc : )} ©)
a—w+8—F+6'—614—8—[{—viscterms At
ot  oxr Oy 0z + OékCtEPQQk

whereF, G, andH represent the fluxes along X, y, and z After each stage**! is calculated using the nonlinear
directions. In the x direction, we Supplement the reSidua"e|ation betweem,. and@. Note that() 0n|y appears in

by the artificial viscosity as follows: the artificial time terms and the artificial viscosity. After
the artificial time derivative approaches zero the resultant
R= oF _ hmg(62p—1|PA|a£) (3)  equation is in conservation form including the physical
O O O time derivative. If the physical time derivative would

whereA is the Jacobian of with respect ta, h, is the also be transformed tQ variables then we might lose

mesh spacing, and is a constant. The absolute value of the conservation form and hence the correct jump condi-

the matrix is found by diagonalizing the matrix, taking tions at a shack. Precond|t|_on|n_g degtroys conservation
n the midst of the pseudo-time iteration process. How-

absolute values of the eigenvalues, with appropriate cut” h h do-time derivati h
offs to avoid singularities. A similar procedure is used ever, when the pseudo-time derivative approaches zero,
for the y and z directions. the algorithm should recover the conservation form.

Another possibility is to consider a mixture of conser-
) ) vation and(@ variables. When evaluating the artificial
Choice of Variables viscosity we us&) variables as given by (5). However,
We consider the sets of variables defined by when updating the variables we revertug variables.
This would be equivalent to (6) if the relation between
w,. and@ variables were linear. We then get

We = (/0’ pu, pU, pw, E)

= 7u7v7w7T 4 A -
Q=(p ) 4) (I—l—akctip)wéﬂ _ w(C)
At
A dp wwk — F(w™, ...
wo = (p,u,v,w,S), divg = (E,du,dv,dw,dS) — apATP {R’é 4 e At(w - )} )]

We shall refer ta as the primitive variables and. as + Oékctg

the conservation variables. The fliéxand the physical At

time derivatives are evaluated in conservation variableshs is the same as (2) except that the artificial viscosity
so that the correct shock jumps are obtained. One M 4, variables is replaced bR, based orQ variables.
plementation of (2) is to use the conservation variablegjence, the two steady states (within the time dependent
throughout the equation. As the Mach number decreasggroplem) are different while (6) and (7) have the same
to zero, the density usually becomes constant and so thgumerical steady state.

conservation variables become less accurate. For almost computations demonstrate that the variables used in
incompressible flow the primitive variables are more ap-the artificial viscosity have a much larger effect than the

k
Pw,

propriate. choice of variables used to update the solution. Hence,
If we change from conservation variables@ovari-  we shall concentrate on comparing (2) with (6) and less
ables we replace (3) by on the mixed formulation (7). We shall further see that
we can efficiently solve these linear systems.
Rg = a—F—h 2(e I 'PoA \8—Q)
©T 9r o’ TN 9 Low Speed Preconditioning
Pg = oQ Pcawc (5) In the above descriptiol? is a preconditioning oper-
dwe ~ 0Q ator based on the conservation variables, which is a full
-1 ep 1 p_p 9Q _0Q, matrix and is difficult to analyze. Instead, we consider
Q@ Qawc ow, ¢ the entropy variablesu,. Now, the entropy equation
decouples from the other variables. Furthermore, the Ja-
Multiplying (2) by % and substitutingAw, = cobian matrix is sparse. The simplest preconditioner in
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wp variables is given by, seg!0 1214 wherec, = ]—i. Let
% 0.0 0 0 1
0 100 0 0
Po'=]0 0100 = o
0 0010 0
0 0 0 0 1 (v—1)T
P
0 is a parameter which should be of the order of the Mach
number as to approximately equalize all the eigenvaluelen for (6)
of PyAy. . - 9
Letc? = 22, ¢% = u? + 0?2 + w? andg? = L*;)qz. (I+d-Po)'z= Ljeif e= 7611(1 ; b 2)
Then the Jacobians that connect these variables are + td-f8
Note,I'2% = Pg.

§? 1-u A=y (Q=-y)w ~-1 < ;

7 N 07 07 v 0 We need to choosé’ and the pseudo-time step. When
owo | % 8 1 0 0 we ignore the correction term and use an explicit formula
ow. | £ » 1 it requires that the pseudo-time step also include a phys-

- 0 0 = 0 . . I e - L

2 p ical time step contribution. The amplification matrix in

2 2 _ _ _ _
¢-c (=yu (=7 (1=vw ~-1 pseudo-time fory, variables, for the two dimensional

L 0 0 0 -% Euler equation in generalized coordinates is given by
o 0 0 _
dwe G 5 Vol
== 0 p 0 - G(0) =Py (wo 2 + w1 A+ wyB 9
dw % o o , -4 () =Po (wo—x, 1 2 ©)
h M2
2 Pu pv pw  —T .

) i N . whereVol is the volume of the cell and,B are the Ja-
whereh = - + 4. The preconditioneP. in conser-  cobian matrices of the inviscid flux vectors in the two
vation variables is then given &, = ggc Py ng), To generalized coordinate space dimensiodsand B are
calculateP,. times a vectof we do it in stg),ges, ‘ symmetric imbg variables and so this is a symmetric hy-
Y= 7;21 [gwl — (uzs + vas + wrs) + 75| and perbolic system Wherg thg physmgierlvatlve is treaj[ed '

as another space derivative relative to the marching di-
1 rectionT. We denote the surface area of the cellSas
w where the first subscript refers to the direction of the nor-
o mal and the second is the projection of that normal in
w each direction. Define the contravariant velocity compo-
h nents as
Then U=uSz: + USzy + WSy,
V =uSys + vSyy + wSy. (20)
Pr=17 2 _Dyz 8 Y
' o (ﬁl )ylz ( ) W= uszw + Uszy + wszz
P li=7+ (= —1uyz
(52 ) In two space dimensions
In (7) we need to evaluatd + d - P.)~! times a vector
whered = ajc; 2T, Then 2 2 2
kCt At Py At B°U  B°cSpa B CSzy
_,+ o 3 (1 _ ﬂz)d G(@) = WOW + wq CSJLL U 0
(I+d'Pc)7lf:x1+lill ‘T I+ pd Sey 0 U
B2V %Sy 3%cSyy
For the primitive variableg)), we have +ws | cSya |4 0
¢Sy, 0 |4
B2 000 0 i
0 1000 In three dimensions let
Pq = 0 01 0 0
0 0010 Vol 2
ET o 9 0 1 D_\/<ctAt > +U VW2,
CcpD
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Then choose Similarly, whenAt,nys is small enough then precondi-
Vol U v W tlolr:ung |sitirned Zﬁglc;t\)ally._ Cw o b
YWENep YT D 2T p BT rom (11) we define\;,, = \;. We scale\,;; by

the volume so it also has dimensioﬁ%. We choose the
and sow? +w? +w?+w? =1. This makes7(6) in (9) a  total time step by
convex combination of the Jacobian matrices. Define

1
N ) AT = 13
U= SqTU +DSWI«/‘:)Z<2F SZTW )\inv + a)\vis + Z)A% ( )
V= SayU + 84y V er Sy W wherea andb are constants. Typical values are-= 4—5
D-Vol andb = 9—25. These are determined semi-empirically
W = SuzU + Sy:V + 5..W based on numerical experiments. Straightforward linear
D - VoP analysis shows that using a simple implicit formula in
F=U+V2+W? each stage of the Runge-Kutta formula does not allow

the use of a larger time step. Hence, even in this case we
ThusU, V, W are combinations of the velocity compo- chooseb = 25. In order to reduce this value éfone
nentsu, v, w that depend on the geometry metrics. Thiswould need an explicit-implicit type formula as derived
combination comes from the analysis and does not nedn! . Note that even wheb = 0, AT depends om\tphys
essarily have any physical interpretation. This gives through);,,, which is a function of32. However, for the

explicit treatment of the time derivative we need to add

32D B*cU BV B*W a term to the time step that depends ©p even when

a— cU D 0 0 preconditioning is not used (i.e3 = 1). Our choice
B 0 D 0 for g and At is different than that of Venkateswaran
W 0 0 D and Merkle!® In addition the parameters of the resid-

ual smoothing should now depend on the physical time
We can easily symmetriz& but this is not necessary in derivative term.
our case. The eigenvalues ave= D and

Results

52+1 52712 2 32,242
Ar= TDi < 2 ) D2+ f2c*q (11) The governing equations are solved using a finite vol-
ume central difference code augmented by a matrix arti-
The analysis so far is based on inviscid equations: thereficial viscosity? 8 The equations are advanced in pseudo-
fore 8 should be designated &%,.,, which is chosen time by a five stage Runge-Kutta scheme accelerated by
such thatscg = Ao = D. For low Mach numberg?  residual smoothing and multigrid*® The parameters for
is small and so\;. ~ %D. We then choosgi,, asa  all the cases are identical with the exception that without
term that depends oP plus a cutoff to prevens from preconditioning the explicit CFL in the residual smooth-
becoming too small. This cutoff depends on a globaling is 3.75, while with preconditioning CFL-explicit is
quantity M, ;. We choose 3.25. For all preconditioning case®,, = M?2. The
dual time-stepping uses a second order BDF formula
stabilized with the algorithm of Melson and Saneftik.
Early work on dual stepping and preconditioning is pre-
sented in>2° Turkel et al® compared results from two
We stress thaB? depends orf%f" even when using an different preconditioning schemes for steady state prob-
implicit method for the time derivative termKk; and lems.
K, are user defined constants. In most cakgscan
be chosen as zero since the physical time derivative terYACA4412
preventss from becoming too small. This is in contrast ~ We first consider a steady state case, turbulent flow
to steady state problems where this term is crucial. around a NACA4412 airfoil. A mesh witB57 x 81
We also account for the viscous effectsdf but this  grid points, constructed using Wigtot’sgrid genera-

is only used to reduce the time step rather than directlytion procedure and displayed in Fig. 1, is used for these
changing the3 used in the preconditioning or the arti- computations. The inflow conditions are = 13.87°
ficial viscosity!® For exterior problems we find that in and /., = 0.2, 0.05 and 0.01. The Reynolds number is
the farfield where there are large volumes, the preconi.52 x 105 and the Baldwin-Lomax turbulence model is
ditioning is turned off locally due to the time derivative. used.

2

D
Biw = Klﬁ + KoM (12)
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Fig. 1 Partial view of grid for NACA4412

We compare the convergence rate without precon-
ditioning versus preconditioning based on conservation
variables and primitivép, u, v, w,T) variables. For all
preconditioned cases we ugge = 1.0. We show a por- <
tion of the grid in figure 1. Every second grid line is
shown to increase the clarity. There are 50 iterations on
two coarser grids and 500 five stage RK iterations on the
finest grid. In figures 2 and 3 we compare the residual as
well as the drag history fal/, = 0.2. We stress that the
only difference between the two preconditioned results
is the artificial viscosity, (Eqns. 2 and 7). In one case
it is evaluated directly on the conservation variables. In
the other case we take differences of the primitive vari-
ables, multiply byl'~!|P A| in primitive variables and
transform back to conservation variables. We see in the
following figures that in the beginning of the computa-

tion both approaches give the same rate of convergence

and accuracy. However, for small residuals an artifi-

cial viscosity based on the conservation variables stalls. We next consider the same case but with an inflow
When the artificial viscosity is based on the primitive Mach number 0.05. The results are given in figures 4
variables convergence continues to decrease further. Our6. The improved convergence for the precondition-
explanation for this phenomena is that for the conservaing is more evident for this case. The convergence for
tion variables the density is fairly constant. Hence, at lowthe conservation variables is reasonable until it bottoms
residual values the contribution from density derivativesout. The convergence with the primitive variables con-
is negligible. For the first few iterations the precondition- tinues in a straight line. Note the difference in the fi-
ing slows the convergence rate of the residual. Howevemal lift coefficient between the preconditioned and non-
the drag converges faster even at the beginning usingreconditioned schemes. This is a reflection of the de-
preconditioning. Overall convergence is improved sig-crease in accuracy without preconditioning for low Mach
numbers-:14

nificantly when preconditioning is used.

5
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—— No prec.
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—-— Prec: p,u,v,T vars.

0 200
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NACA4412 - M, = 0.2, residual history

—— No prec.
Prec: cons. vars.
—-— Prec: p,u,v,T vars.

0 200

400 600
CYCLES

Fig. 3 NACA4412 - M., = 0.2, drag history
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Fig. 4 NACA4412 - M., = 0.05, residual history
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Fig. 5 NACA4412 - M., = 0.05, drag history
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Fig. 6 NACA4412 - M., = 0.05, lift history
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We finally show the results in figures 7 through 9 for
the same case but an inflow Mach number 0.01. The dif-
ference in lift and drag between the preconditioned and
non-preconditioned algorithms is now quite noticeable.
The pattern of the convergence history is similar to the
previous cases but is more dramatic. We now clearly see
that using conservation variables in the artificial viscosity
limits the convergence of the residual even with precon-
ditioning.

10" |- —— No prec. 1
- Prec: cons. vars.
i —-— Prec:p,u,v,T vars.
10
2 10°
)
Q
&
e 10°

O]
@]

— 107 L R L

N
\\
N
10° - he .
N\,
g Dy o b b
10_‘1 L L L L
0 200 400 600 800 1000
CYCLES

Fig. 7 NACA4412 - M., = 0.01, residual history

—— No prec.
- Prec: cons. vars.
—-— Prec: p,u,v,T vars.

Cd

600

400 1000
CYCLES

Fig. 8 NACA4412 - M, = 0.01, drag history
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— Eo prec. ] ' ‘ o
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—-— Prec: p,u,v,T vars. ‘
TSN

1.6 11/ |
Iad's 200 400 600 800 1000 S s 7

CYCLES

NONEN

==

A

Fig. 9 NACA4412 -M., = 0.01, lift history

NACAO0012- high angle of attack

We next consider turbulent flow around a NACA0012
airfoil. An O mesh containing41 x 61 points (Fig. 10) is Fig. 11 Grid near trailing edge of NACA0012
used for this configuration. An exploded view of the grid o ,
near the trailing edge is shown in Fig. 11. The inflow W€ begin with the steady state calculation for=
conditions areM. = 0.1, an angle of attack of2° and 12°. The convergence of the residual and drag coefficient
Re = 3 x 10°. A Spalart-Allmaras turbulence model is are shown in Figs. 12 and 13. We see that without pre-

used. At this angle of attack the flow is still steady. We conditioning the convergence stalls, as expected, with an

also consider an angle of attack3if where the flowis Nflow Mach number\/,, = 0.1. Basing the precondi-
no longer steady. tioning on the conservation variables (Egn. 2) improves
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the convergence rate. However, using primitive variables
in the artificial viscosity (Eqn. 6) yields a better asymp-
totic rate. Although not shown here, we observed that
the variable used for the update ( Egn. 6 versus Eqgn.
7) has no effect on the convergence rate. When using
\\\‘\\\\\Q““‘““‘\“‘“ ,,',',’"ll,,",[,' w, variables the residual is based on the density while
\““?““‘\{{{{“““‘l‘“‘«««""z"'l"’";, when usingy variables the residual is based on the pres-
Wﬂ&\\\nﬂﬂlﬁ’#/@{ sure. We see that the preconditioning yields significantly
“‘s\:\‘\\\\\\\\\\\\%{{&\‘\‘\\\\“"“ﬂﬂ,'}"’ better convergence than the non-preconditioned scheme.
\&&W“ ) ',,':l':',z'lz}, Furthermore, the steady state is different when precondi-
S "’2,’;}22%’ tioning is used. Based on earlier work of Turkel et'al.,
we expect the preconditioned results to be more accurate.
- = W% next zxamine the\:/\c/:onverggnce and a:cm;racy fEr thﬁ
iy N time dependent case. We consider an angle of attack wit
< 'égﬁﬁ’;’;’?}ﬁ’l‘l:‘:‘}ﬁ:‘}“‘\\\,s a = 30° and inflow Mach number o}/, = 0.1. Since
%ﬁ%}%ﬁﬁ’ﬂﬁﬁ“ the flow is now time dependent we are only interested in
"llzllllzf’//,%’,’,’,’nnl{“'\\\\{\\\‘\\\\ the convergence rate within a physical time cycle. We
use 30 cycles (5 stage Runge-Kutta with multigrid and
residual smoothing) of pseudo-time stepping within each
physical time cycle. In Fig. 14 we display the residual
(density forw, variables and pressure f@) variables)
while in Fig. 15 we display the lift. In both cases we see
that initially the convergence is best without any precon-
ditioning. The residual stalls after a few cycles but the
lift has already reached its new level to within graphical

Fig. 10 Partial view of grid for NACA0012
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accuracy. The overall convergence rate for the residual 06

is improved with preconditioning on conservative and
primitive variables. The convergence of lift with precon-
ditioning with an artificial viscosity based on conserva-
tion, w, variables is slightly worse but is also reasonable.
When the preconditioning uses primitive variables in the o2
artificial viscosity then the initial convergence is slowed

and one requires about 15-20 subiteration cycles for the

lift to converge to graphical accuracy. In all cases the 0.0 |
variables used to advance the solution to the next cycle
had little effect (figure not shown here) on either the con-
vergence rate of the subiterations or the on the accuracy. 02
The major influence is due to the variables used in the
artificial viscosity.

0.4

-0.4

—— No Preconditioning
"""""" Prec. on cons. variables
—-— Prec. on primitive variables

0

We stress that the use of preconditioning affects the
accuracy of the solution and so changes the values of the 1¢

Il Il
200 400 600

CYCLES

ig. 13 (| for steady state NACA0012

lift and drag. In Fig. 16 we plot the time dependent his-

tory of the lift. We clearly see that for short times the two
preconditioned results, with the artificial viscosity based 10
on conservation or primitive variables, agree with each
other but give a different lift than the non-preconditioned_I 2
algorithm. Based on the results from low speed steads
flows that demonstrated improved accuracy with precong
ditioning ! it is reasonable to assume that the unsteads 10
solutions obtained here with preconditioning are more
accurate compared to the un-preconditioned solutions.

10"

—— No Preconditioning
-~ Prec. on cons. variables
—-— Prec. on primitive variables

4050

4100 4125 4150

CYCLES

4075 4175

Fig. 14 Residual within subiterations fora = 30°

—— No Preconditioning

- Prec. on cons. variables
—-— Prec. on primitive variables

10° ‘
1.50
—— No Preconditioning
o P Prec. on cons. variables
10 : —-— Prec. on primitive variables
; 1.45
10°
_2
10 O 1.40
107 -
1.35
107 ¢ ]
107 : : 1.30
0 200 400 600 4050
CYCLES
Fig. 12 Residual for steady state NACA0012
8

Il Il Il
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Il
4075 4175

Fig. 15 ¢ within subiterations for « = 30°
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speed steady _S_tat_e pr_ObIemS IS 'mPrQV?‘?' 3|gn|f|cantly 191, Wwigton, High Quality Grid Generation Using "Laplacian
when preconditioning is used. The primitive variables sweeps; Fourth Inter. Symp. Comput. Dynamics, technical papers I,
based preconditioner appears to be most effective fobniversity of California, Davis, 1222-1227 (1991).
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steady state flows. However, for time-dependent prob- °"J.P- Withington, J.S. Shuen and V. Yarg,Time Accurate, Im-
| limi lts about the choi f di plicit Method for Chemically Reacting Flows at All Mach Numbers
ems, preliminary results about the choice of precondi-y s paper 91-0581 (1991).
tioners are somewhat inconclusive, and requires further

testing.
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